On finite minimal non-p-supersoluble groups
نویسندگان
چکیده
منابع مشابه
Languages Recognized by Finite Supersoluble Groups
In this paper, we give two descriptions of the languages recognized by finite supersoluble groups. We first show that such a language belongs to the Boolean algebra generated by the modular products of elementary commutative languages. An elementary commutative language is defined by a condition specifying the number of occurrences of each letter in its words, modulo some fixed integer. Our sec...
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملSupersoluble Groups
We shall term a group G supersoluble if every homomorphic image H9*l of G contains a cyclic normal subgroup different from 1. Supersoluble groups with maximum condition, in particular finite supersoluble groups, have been investigated by various authors: Hirsch, Ore, Zappa and more recently Huppert and Wielandt. In the present note we want to establish the close connection between supersoluble ...
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملFinite p-groups with few non-linear irreducible character kernels
Abstract. In this paper, we classify all of the finite p-groups with at most three non linear irreducible character kernels.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1992
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-63-1-119-131